Real-Valued GCS Classifier System

نویسندگان

  • Lukasz Cielecki
  • Olgierd Unold
چکیده

Learning Classifier Systems (LCSs) have gained increasing interest in the genetic and evolutionary computation literature. Many real-world problems are not conveniently expressed using the ternary representation typically used by LCSs and for such problems an interval-based representation is preferable. A new model of LCSs is introduced to classify realvalued data. The approach applies the continous-valued context-free grammar-based system GCS. In order to handle data effectively, the terminal rules were replaced by the so-called environment probing rules. The rGCS model was tested on the checkerboard problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fully complex-valued radial basis function classifier for real-valued classification problems

In this paper, we investigate the decision making ability of a fully complex-valued radial basis function (FC-RBF) network in solving real-valued classification problems. The FC-RBF classifier is a single hidden layer fully complex-valued neural network with a nonlinear input layer, a nonlinear hidden layer, and a linear output layer. The neurons in the input layer of the classifier employ the ...

متن کامل

Learning classifier systems for decision making in continuous-valued domains

This thesis investigates Learning Classifier System architectures for decision making in continuous-valued domains. The information contained in continuous-valued domains is not always conveniently expressed using the ternary representation typically used by Learning Classifier Systems and an interval-based representation is a natural choice. Two intervalbased representations recently proposed ...

متن کامل

Configuring ZCS for Continuous-Valued Single-Step Boolean Problems

In this paper we investigate the performance and operation of a Learning Classifier System on problems with real-valued states and a Boolean action space. Specifically, we study aspects of the algorithm and parameter set of the simple strength-based Learning Classifier System used, ZCS. Increased performance is found to result from the use of an update algorithm based on that of NewBoole, an ea...

متن کامل

For Real! XCS with Continuous-Valued Inputs

Many real-world problems are not conveniently expressed using the ternary representation typically used by Learning Classifier Systems and for such problems an interval-based representation is preferable. We analyse two interval-based representations recently proposed for XCS, together with their associated operators and find evidence of considerable representational and operator bias. We propo...

متن کامل

Learning Classifier System Approach to Natural Language Grammar Induction

This paper describes an evolutionary approach to the problem of inferring non-stochastic context-free grammar (CFG) from natural language (NL) corpora. The approach employs Grammar-based Classifier System (GCS). GCS is a new version of Learning Classifier Systems in which classifiers are represented by CFG in Chomsky Normal Form. GCS has been tested on the NL corpora, and it provided comparable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computer Science

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007